Ministry of Education
 Department of Higher Education Yangon University of Distance Education

Yangon University of Distance Education Research Journal

Ministry of Education
 Department of Higher Education Yangon University of Distance Education

Yangon University of Distance Education Research Journal

Contents Page
Patriotic Pride from U Latt's Novel, "Sabae Bin" 1-4
Kуи Kyu Thin
Creation of characters in Kantkaw a novel of Linkar Yi Kyaw 5-9
Khin San Wint
Author Khin Khin Htoo's Creative Skill of Writing a Story " Ku Kuu" 10-15
Kyin Thar Myint
A Stylistic Analysis of the poem "the road not taken" by Robert Frost 16-22
Nyo Me Kyaw Swa
The Effectiveness of Critical Thinking on Students in Classroom 22-26
Amy Thet
in first year online class at Yangon University of Distance Education Ei Shwe Cin Pyone
A Geographical Study on Spatial Distribution Pattern of Health Care Centres in Sanchaung 33-39 Township
Myo Myo Khine, Win Pa Pa Myo, Min Oo, Kaythi Soe
A Study of Crop-Climate Relationship in Hlegu Township 39-45
Win Pa Pa Myo, Myo Myo Khine
How to Organize Data for Presentation 46-50
Yee Yee Myint, Myint Myint Win
A Geographical Study on Open University in New Zealand 50-54
Myint Myint Win, Yee Yee Myint
Royal Administrative Practices in Konbaung Period (1752-1885) 54-60
Pyidawtha Programme (1952-1960) 60-69
Zaw Naing Myint
The Role of Saya San in Myanmar Politics (1930-1931) 70-76
Hlaing Hlaing Nyunt
A Study of the Floral Arabesque Patterns in Myanmar Traditional Paintings 76-81
Hla Hla Nwe
A Study on Job Stress of Office Staff from Yangon University of Distance Education 82-86
Khin Ya Mone, Ma Aye, Theint Thiri Zan
A study on the job satisfaction of the teaching staff in Yangon University of Distance Education 86-91
Theint Thiri Zan, Thiri Hlaing, Ma Aye
A study on the work motivation of the teaching staff in Yangon University of Distance Education 91-96
A study of Aristotle's Golden mean 97-101
Nwe Nwe Oo
A Study of Legal Thought of John Austin 102-109
Aye Aye Cho
A study of the concept of "good will" in Kantian philosophy from the Myanmar philosophical 109-115
thought
Moe Aye Theint
The Term "Pāragū" in the Buddhist Scriptures 115-121
Theingi Cho
Aräda's Teaching from the Buddhacarita 122-126
Pa Pa Aung
The Merit of Donating Four Material Requisites 126-131
Marlar Oo
The Benefits of Workers under the Workmen's Compensation Act in Myanmar 131-135

Contents
 Page

Study on the Humanitarian Intervention under International Law	136-141
Nu Nu Win	
A Study on the Quality of Fried Edible Oil (Palm Oil)	142-148
Thazin Lwin, Myo Pa Pa Oo, Nyi Nyi	
New Ceramer Coating Based on Titanium-resorcinol Copolymer with Blown Seed Oils	149-156
Yu Yu Myo, Nwe Ni Win, Thazin Win	
A Study on Antioxidant Activity of Edible Green Leaves of Brassica Juncea Linn. (Mom-HnyinSein)	156-161
Ohmar Ko, Thuzar Win, Hnin Yee Lwin	
Microcontroller controlled four-digit timer	161-166
Lei Lei Aung, Myo Nandar Mon, Khin Phyu Win, Moh Moh	
Study On Current-Voltage Characteristics of Znte Electroplated Film Under Illumination	166-172
Myo Nandar Mon, Thi Thi Win, Lei Lei Aung, Moh Moh	
Effect of Heat Treatment on Optical Properties of Cd-doped ZnO Thin Film	173-175
Su Thaw Tar Wint, Myo Myint Aung, Moh Moh	
Radon concentration in soil samples from different layers of the underground of Bago University campus	176-180
Thi Thi Win, Myo Nandar Mon, Aye Aye Khine, Moh Moh	
A Study on Weakly Preopen and Weakly Preclosed Functions	181-187
Kaythi Khine, Nang Moe Moe Sam, Su Mya Sandy	
Functions and Their Graphical Representation	187-193
Ohmar Myint, Moe Moe San, Zar Chi Saint Saint Aung	
Trilinear and Quadrilinear Forms	193-198
Wai Wai Tun, Aye Aye Maw	
Prevalence and bionomics of Aedes aegypti (Linnaeus, 1762) larvae in high risk areas of 198-204 Pazundaung Township, Yangon Region	
Tin Mar Yi Htun	
Comparative study of helminthes parasitic eggs and larvae in goat from Magway Township	205-213
Nilar Win, Myat Thandar Swe, Thinzar Wint	
Endoparasites of anurans from north Dagon and Kamayut Townships	213-218
Pa Pa Han, Thuzar Moe, Phyo Ma Ma Lin, Aye Aye Maw	
Investigation of some invertebrates in Taungthaman Lake, Amarapura Township, Mandalay Division	219-225
Khin Than Htwe, Kathy Myint, Thin Thin Swe, Aye Kyi	
Antimicrobial activity of Dolichandrone spathacea (l.f.) k. Schum. Flowers	226-231
Moet Moet Khine, Tin Tin Nwe, Win Win Shwe, Mya Mya Win	
Five Selected Wild Medicinal Plants and Theirs' Uses	232-237
Mya Mya Win, Moet Moet Khine, Win Win Shwe	
The Comparison of the Yield from Non-Grafted and Grafted of Five Plants of Family Solanaceae	238-244
Win Win Shwe, Moet Moet Khine, Mya Mya win	
Silk Fabrics Factories in Amarapura	245-251
Win Thida, Ni Ni Win, Yu Lae Khaing	
A study on production of rubber in Myanmar (1996-97 to 2017-2018)	251-257
Tin Tin Mya, Ni Ni Win, Thinzar Aung	
A Study on Factors Affecting the Exclusive Breastfeeding of Mothers in PYA-PON District	258-265
Khin Mar Kyi, May Zin Tun	
A Study on the Health Status and Physical Fitness of Elderly People at Home for the Aged (Hninzigone), Yangon	266-273
Hein Latt, Pyae Phyo Kyaw	
A Study on Mortality and Fertility levels of Myanmar and its Neighbouring Countries Ni Ni Win, Thinn Thinn Aung, Thinzar Aung	273-280

(viii) \Rightarrow (ix) Let y be any point in Y and each open set U in X with $f^{-1}(y) \in U$.

Then there exists a preopen set A in Y and we obtain
$A=Y \backslash p C l(f(X \backslash C l(U))), \mathrm{by}($ viii $)$
$f^{-1}(A)=X \backslash f^{-1}(p C l(f(X \backslash C l(U)))) \subseteq X \backslash f^{-1}(f(X \backslash C l(U))) \subseteq C l(U)$.
(ix) \Rightarrow (i) Let U be any set in X and F be a closed set in X. Suppose that $F=C l(U)$ and
$y \in Y \backslash f(C l(U))$. Since $f^{-1}(y) \subseteq X \backslash C l(U)$, then there exists a preopen set A in Y with
$y \in A$ and $f^{-1}(A) \subseteq C l(X \backslash C l(U))=X \backslash \operatorname{Int}(C l(U))$.
Therefore, $A \cap f(\operatorname{Int}(C l(U)))=\phi$, and $y \in Y \backslash p C l(f(\operatorname{Int}(C l(U)))$. So, we obtain
$p C l(f(\operatorname{Int}(C l(U)))) \subseteq f(C l(U))$.

Acknowledgements

We wish to express our thanks to Dr. Tin Maung Hla, Rector of Yangon University of Distance Education, for his kind permission to carry out this research. Our special thanks also go to Dr. Khin Thant Sin, Pro-Rector of Yangon University of Distance Education.

We are deeply indebted to our respectable Professor Dr. Moe Moe San, Head of Department of Mathematics, Yangon University of Distance Education, for her kind permission and encouragements throughout this research paper.

References

Baker,C.W., Decomposition of openness, Int.J.Math \& Math. Sci. 17(1994), 413-415.
Caldas. M; Navalagi.G.B., On weak forms of preopen and preclosed functions, Archivum Mathematicum, Vol. 40 (2004), No.2, 119-128.

El-Deeb, S.N, Hasanein, I.A., Mashhour,A.S and Noiri, T., On p-regular spaces, Bull. Math. Soc.sci. Math.R.S.Roum . 27(1983), 311-315.
Levine, N., Strong continuity in topological spaces, Amer. Math. Monthly 67 (1960), 269.
Mashhour,A.S., Abd El-Monsef, M.E. and El-Deeb, S.N.,Precontinuous and weak pre-continuous mappings, Proc. Math.Phys.Soc.Egypt 53 (1982), 47-53.
Rose, D.A. Weak openness and almost openness, Int.J.Math \& Math. Sci. 7(1984), 35-40.
Rose, D.A. and Jankovic, D.S, Weakly closed functions and Hausdorff spaces, Math. Nachr. 130(1987), 105-110.

Functions and Their Graphical Representation

Ohnmar Myint ${ }^{1}$, Moe Moe San ${ }^{2}$, Zar Chi Saint Saint Aung ${ }^{3}$

Abstract

In this paper we shall define one of the most fundamental concepts in mathematics, the notation of a function. We shall discuss the notation used to describe functions and investigate some of their graphs.

Key words: Function, graph, relation, domain, range.

Introduction

In mathematics, the concept of a function is very important and useful. It appears in almost every branch of the subject. We shall use the word function to denote a certain specific type of correspondence or association between the elements of two sets. And then, we shall show how to represent a functions geometrically by graphs. Such graphs provide a useful way of visualizing the behavior of a function. We shall also develop some basic techniques for using graphs of simple functions to constant graphs of more complicated functions.

[^0]
The concept of a function and its graph

The term "function" was first used by Lebriz in 1673 to denote the dependence of one quantity on another.

The area of a circle depends on its radius r by the equation $A=\pi r^{2}$,so, we say that "A is a function of r ".

The velocity V of a ball falling freely in the earth's gravitational field increases with time t until its hits the ground, so we say that " V is a function of t ".

In general, if a quantity y depends on a quantity x in such that each value of x determine exactly one value of y then we say that " y is a function of x ".

Definitions

If there is associated with each element of a set X exactly one element of another set Y, then this association constitutes a functionfrom X to Y, usually written $f: X \rightarrow Y$. The set of X is called the domain of the function f and the set Y is called its range.

If the letter f to denote a function then the equation $y=f(x)$, the quantity x is called the independent variable of f and the quantity y, the dependent variable of f.
x and y may represent a numerical quantities, but f itself does not represent a numerical quantity, it stands for a "relationship between x and y ".

For example: $y=100-4 x^{2}, 0 \leq x \leq 5$. The domain of the function is the set $\{x: 0 \leq x \leq 5\}$ and the range of the function is the set $\{y: 0 \leq y \leq 100\}$.

For example,consider the unit circle and its equation $x^{2}+y^{2}=1$ and then $y=\sqrt{1-x^{2}}$. In the equation $y=\sqrt{1-x^{2}}$, the domain is the set $X=\{x \mid x \in R$ and $-1 \leq x \leq 1\}$ and the range is the set $Y=\{y \mid y \in R$ and $0 \leq y \leq 1\}$.
Note: The important points are that a function pairs one and only one element of Y with each element of X.
Definition: An important and yet almost trivial, function is the one which associates all real numbers with the same fixed number. Such a function, called a constant function, written $f: x \rightarrow c, c$ is constant.
Definition: A function from X to Y is a set of ordered pairs (x, y) such that to each $x \in X$, there corresponds a unique $y \in Y$. We may use the set notation to describe a function $\{(x, y) \mid$ $y=f(x)\}$.
Definition: The graph in the $x y$-plane of a function f is defined to be the graph of the equation $y=f(x)$.

Consider the function defined by the equation $y=2 x-6$ for all positive integers less than 10 , where $\mathrm{X}=\{1,2,3, \ldots, 9\}$.For this function, $f(1)=-4, f(2)=-2$, and so on. The function f is illustrated in the following figure.

Examples for some graphs of function

The domain of X, of x-values, the range Y, the set of y-values and the rule, relationship or correspondence which associated these two sets in a certain way. Unless otherwise state, both domain and range of any function will be the largest possible set of suitable real numbers.
Consider, the graph of $f(x)=|x|, y=f(x)=\left\{\begin{aligned}-x, & x<0 \\ x, & x \geq 0 .\end{aligned}\right.$

Figure (i)
Consider, the graph of $f(x)=x^{2}$.

Figure (ii)
The graph of $f(x)=\sqrt{x}$.

Figure (iii)

The graph of $f(x)=x^{3}$.

Figure (iv)
The graph of $f(x)=x^{4}$.

Figure (v)

Graphical representation of functions

Using the rectangular coordinate system, we are able to exhibit the association between x and y (or any two variables) in the case of any particular function.

Linear functions and its graphs

The slope of a nonvertical line passing through the two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the number m defined by, $\quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
We denote, change in x by $\Delta x=x_{2}-x_{1}$ and Δy change in $\mathrm{y}, \Delta x=y_{2}-y_{1}$. So slope, $m=\frac{\Delta y}{\Delta x}$.
Comparing slopes:There are positive slope, negative slope, horizontal lines slope and vertical lines slope.

The point-slope formula: An equation of the line with slope m passing through the point $\left(x_{1}, y_{1}\right)$ is $y-y_{1}=m\left(x-x_{1}\right)$.
The slope intercept formula; $y=m x+b, \mathrm{~m}$ is slope and b is the point of y -intercept.
The general forms of straight line: $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0, \mathrm{~A}, \mathrm{~B}$ and C are constants.
Let m_{1} and m_{2} denote the slopes of two distinct nonvertical lines. Then the lines are parallel if and only if $m_{1}=m_{2}$ and the lines are perpendicular if and only if $m_{1}=-\frac{1}{m_{2}}$.
Note (i) Two lines are parallel then this two lines are no intersect and no solutions.
(ii) Two lines are intersect, the solution is unique.
(iii) Two lines are the same, the solution is many.

To find an equation for the line passing through the two points $(4,8)$ and $(-3,-6)$ the graph of its equation:
slope: $m=\frac{-6-8}{-3-4}=\frac{-14}{-7}=2$

$$
\begin{array}{ll}
\text { equation: } & y-y_{1}=m\left(x-x_{1}\right) \\
& y-8=2(x-4) \\
& y=2 x-8+8 \\
& y=2 x
\end{array}
$$

x	0	-1	1	2
y	0	-2	2	4

Figure (vi)

Quadratic functions and its graphs

A quadratic function is an equation that can be written in the form $a x^{2}+b x+c=0$, where a, b and c are real numbers and a is not zero. We solved quadratic equations in two ways,
by factions and by quadratic formula. The quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. If $b^{2}-4 a c>0$, then the two distinct real solutions, if $b^{2}-4 a c=0$, then the one real solution and if $b^{2}-4 a c<0$, then the two complex solutions.
To solve quadratic equations $4 x^{2}-12 x+9=0$.
(i) By factoring; $4 x^{2}-12 x+9=0$ (ii) By quadratic formula; $x=\frac{-(-12) \pm \sqrt{(-12)^{2}-4(4)(9)}}{2(4)}$

$$
\begin{array}{cr}
(2 x-3)(2 x-3)=0 & x=\frac{12 \pm \sqrt{144-144}}{8} \\
(2 x-3)^{2}=0 & x=\frac{12}{8}=\frac{3}{2} . \\
(2 x-3)=0 \text { and } x=\frac{3}{2} . &
\end{array}
$$

The graph of quadratic equations $4 x^{2}-12 x+9$,

x	0	1	2
y	9	1	1

Vertex: $x=\frac{-b}{2 a}=\frac{-(-12)}{2(4)}=\frac{12}{8}=\frac{3}{2}, y=4\left(\frac{3}{2}\right)^{2}-12\left(\frac{3}{2}\right)+9=0$
Symmetry line:

Figure (vii)

Some other functions and its graphs:

The function represented by the set of ordered pairs $\{(x, y)|y=|3 x-2|\}$. We construct the table.

x	-1	0	1	2	3
y	5	2	1	4	7

Figure (viii)
For inequality function $y \leq x+5$, for the graph of the relation, we first plot the line $y=x+$ 5 and then realize that for any particular x the point (x, y) is a member of the required set if its y-coordinate is equal to or less than it would be if the point lay on the line. The required set is thus the line $y=x+5$, and all points below this line. The shaded area indicates the graph of this relation. We construct the table.

x	-5	-2	0	2
y	0	3	5	7

Figure (ix)

Acknowledgements

We wish to express our thanks to Dr. Tin Maung Hla, Rector of Yangon University of Distance Education, for his kind permission to carry out this research. Our special thanks also go to Dr. Khin Thant Sin, Pro-Rector of Yangon University of Distance Education.

We are deeply indebted to my respectable Professor Dr. Moe Moe San, Head of Department of Mathematics and Professor Dr. Nang Moe Moe Sam, Department of Mathematics, Yangon University of Distance Education, for their kind permission and encouragements throughout this research paper.

References

E. P. Vance. Modern Algebra and Trigonometry, Addison-Wesley Publishing Company, Inc. 1962.

Howard Anton. Calculus with Analytic Geometry, ($\left.5^{\text {th }} \mathrm{ed}.\right)$. John Wiley \& Sons, Inc. 1995.
$* * * * * * * * * * * * * * * * *$

Trilinear and Quadrilinear Forms

Wai Wai Tun ${ }^{1}$, Aye Aye Maw ${ }^{2}$

Abstract

Most of the partial differential equations that arise in Continuum Mechanics and Physics are nonlinear. Because of their nonlinearity, the mathematical study of these equations is difficult and require the full power of modern functional analysis. This paper deals with the trilinear and quadrilinear forms to construct the variational formulation of some nonlinear partial differential equations of higher order.

Key words: trilinear, quadrilinear, variational formulation

1. Introduction

Let Ω be a Lipschitz open bounded subset in \mathbb{R}^{n}. We shall use the notation of the spaces $\mathrm{V}=\{u \in \mathrm{D}(\Omega)$, div $u=0\}, \boldsymbol{V}=$ the closure of V in $H_{0}^{1}(\Omega), H=$ the closure of V in $L^{2}(\Omega), \mathrm{W}=\mathrm{D}(\Omega), W=$ the closure of W in $H_{0}^{1}(\Omega), G=$ the closure of W in $L^{2}(\Omega)$. Let $V^{\prime}, W^{\prime}, H^{\prime}$ and G^{\prime} denote the dual spaces of V, W, H and G. Then we have the inclusions $V \subseteq H \equiv H^{\prime} \subseteq V^{\prime}$ and $W \subseteq G \equiv G^{\prime} \subseteq W^{\prime}$.
1.1 Lemma [Temam, R. 1977] Let V, H, V^{\prime} be three Hilbert spaces with $V \subseteq H \equiv H^{\prime} \subseteq V^{\prime}$.Let $u \in L^{2}(0, T ; V)$ and $u^{\prime} \in L^{2}\left(0, T ; V^{\prime}\right)$.Then $u:[0, T] \rightarrow H$ is continuous a.e and

$$
\frac{d}{d t}|u|^{2}=2\left\langle u^{\prime}, u\right\rangle
$$

holds in scalar distribution sense on $(0, T)$.

[^1]
[^0]: ${ }^{1}$ Associate Professor, Dr., Department of Mathematics, Yangon University of Distance Education ${ }^{2}$ Associate Professor, Dr., Department of Mathematics, Yangon University of Distance Education ${ }^{3}$ Assistant Lecturer, Department of Mathematics, Yangon University of Distance Education

[^1]: ${ }^{1}$ Associate Professor, Dr, Department of Mathematics, Yangon University of Distance Education
 ${ }^{2}$ Associate Professor, Dr, Department of Mathematics, Yangon University of Distance Education

